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A new type of probabilistic cellular automaton for the physical description of single and multilane tra�c is

presented. In this model space, time and the velocity of the cars are represented by integer numbers (as usual

in cellular automata) with local update rules for the velocity. The model is very e�cient for both numerical

simulations and analytical investigations. The numerical results from extensive simulations reproduce very

well data taken from real tra�c (e.g. fundamental diagrams). Several analytical results for the model are

presented as well as new approximation schemes for stationary tra�c. In addition the relation to continuum

hydrodynamic theory (Lighthill-Whitham) and the follow-the-leader models is discussed. The model is part of

an interdisciplinary research program in Northrhine-Westfalia ("NRW Forschungsverbund Verkehrssimulation")

for the construction of a large scale microsimulation model for network tra�c, supported by the government of

NRW. It is also part of the TRANSIMS research e�ort in Los Alamos.

1 Introduction

The dynamical properties of 
ow processes is an interesting and very active �eld of research
in physics. Realizations of this kind of systems range from water in a river or sand ("granular
material") in a pipe over car tra�c and pedestrian dynamics to the propagation of earthquakes.
All these systems have in common that two phenomena are in competition with each other: on
one hand a driving force (gravitation, acceleration desire, stress in earth's crust etc.) giving rise
to the so-called driven di�usion and on the other hand energy loss through dissipation (heating
of particles through collisions, decelaration of cars and heating of the environment).

On a macroscopic scale it is very di�cult to distinguish between the various systems mentio-
ned above although the microscopic processes are completely di�erent. The phenomenological
understanding therefore is possible on a macroscopic scale but the analysis of the resulting
equations poses serious problems if one tries to understand the dynamical properties in detail.
So it is possible to solve the hydrodynamical equations for tra�c 
ow of the Lighthill-Whitham
type [1, 2, 3] numerically but the discretization neither gives a corresponding microscopic model
nor allows for the treatment of larger systems (with millions of cars) in a reasonable time and
with an appropriate e�ort and more complex situations (e.g. network tra�c).

In order to avoid these problems it is necessary to try to formulate a microscopic model directly.
One step in this direction are the Follow-the-Leader type models where each car is treated
separately but space and time and the interaction between the cars are treated in a continuous
way [4] (for a newer approach in this direction see also [5]). An even more simple starting
point is given by using the ideas of the so-called Cellular Automata (CA) models which have
been used in physics for a long time in order to simulate complex dynamical phenomena.
The main advantage is that in CA models one deals exclusively with discrete variables both
for time and space (and consequently for the velocity of the cars) with local update rules
for the internal parameters, i.e. the velocity. These models allow for large scale simulations on



(parallel) computers with results comparable to data measured in real tra�c (see [7], 95ATS089,
this book). On the other hand it is possible to derive several analytical results, and to apply
approximation schemes where this is not possible. We will show the results below.

2 Description of the Model

In the following we will �rst describe the simplest situation: Single-lane tra�c on a ring of length
L with periodic boundary conditions ("Indianapolis situation"). The dynamics of the model
which has been introduced in [6] is de�ned by a set of four rules. These rules �x the update of
the velocity and the movement of each car and have to be applied for all cars simultaneously
("parallel update"). Each lattice site can be occupied by a car or it is empty. The velocity
of a car is stored as an internal parameter ("memory") v = 0; 1; : : : ; vmax where vmax is the
maximum velocity possible in the system. At each discrete timestep t ! t + 1 an arbitary
arrangement of the N cars is then updated according to the following rules:

1) Acceleration: If the velocity v of a vehicle is lower than vmax the speed is advanced by
one [v = v + 1].

2) Slowing down (due to other cars): If the distance d to the next car ahead is not
larger than v (d � v) the speed is reduced to d� 1 [v = d� 1].

3) Randomization: With probability p, the velocity of a vehicle (if greater than zero) is
decreased by one [v = v � 1].

4) Car motion: Each vehicle is advanced v sites.

Rule 1 re
ects the permanent wish of the car driver to accelerate and to approach his desired
(maximum) velocity. In order to avoid car crashes one has to decelerate cars when their velocity
is not less than the distance to the car ahead (which would, according to rule 4, lead to a crash
in the next timestep). Without rule 3 the motion of the cars would be completely deterministic
and the consequence would be a strong dependence on the initial condition of the system, a
very unphysical property. Finally, rule 4 describes simply the act of the motion of the cars
according to their (just determined) velocity.

The performance of the model on macroscopic scales (time and space) is fairly good in compa-
rison with real data. The only point one has to worry about is the exact value of the maximum
velocitiy vmax and the deceleration probality p. We found out that vmax = 5 and p = 0:5 is a
reasonable choice (for more details see [7], 95ATS089, this book). We want to discuss in this
article more the theoretical aspects of the model and certain limiting cases as well as extensions.

3 Relation to tra�c 
ow theory

The model can also be seen as a discrete particle hopping model [8]. For many particle hopping
models the so-called 
uid-dynamical limit is known, which is roughly speaking the limit for
large temporal and spatial scales when one can smear out the particles. The following particle
hopping models are important in this context:

1.) The Asymmetric Exclusion Process. This is probably the most-researched particle hopping
process [9]. The update rule is very simple: Pick one particle at random and move it one site
to the right if this site is empty. The random picking of particles introduces noise into the
model ("random sequential" update) which will lead to di�erent stationary (asymptotic) states



than the (deterministic) parallel update (see below). Because of vmax = 1 one needs no velocity
memory, which is also true for the CA-model described above.

The asymmetric exclusion process is, in the hydrodynamical (continuum) limit, identical to the
Lighthill-Whitham-theory when one adds di�usion and noise, and specializes it to a quadratic

ow-density relation (known as the Greenshields relation in tra�c science; see, e.g., [10]):

@t�+ @xq = D @2
x
�+ � ; q = �(1 � �) ;

where @t, @x and @2
x
denote �rst and second order partial derivatives with respect to time t and

space x. � is the density, q is the throughput, D is the di�usion coe�cient, � is a noise term.

Being described by this theory, the asymmetric exclusion process displays the same kinematic
waves as the Lighthill-Whitham-theory; the additional di�usion term on the right-hand side of
the above equation leads to wave dissipation with damping constant D. The noise � introduces
stochasticity due to the in
uence of external random forces.

2.) The Deterministic Tra�c Cellular Automaton. This is the deterministic limit of the CA-
model for tra�c 
ow without rule 3) which is equivalent to setting p = 0. It is equivalent
to the Lighthill-Whitham-theory with an "inverse V" 
ow-density relation, and is therefore
fairly equivalent to, say, Daganzo's cell-transmission-model [11]. It produces laminar 
ow at
low densities and start-stop-waves at high densities. But due to the lack of the important
ingredient of external noise this model is only of restricted interest for real world applications.

These special cases of the CA tra�c model so far do not explain the spontaneous phase separa-
tion into relatively free driving cars and rather dense regions observed in real tra�c. Thus, one
needs all three ingredients | 1.) the parallel update (in contrast to the asymmetric exclusion
process), 2.) the randomness in the update rule (in contrast to the deterministic variant), and
3.) a maximum velocity larger than one | in order to obtain plausible tra�c jam dynamics.
See [12] for further details.

4 Exact results

The model as de�ned above does not allow for a complete analytical solution due to the non-
linear ("hard core") interaction between the cars (in order to avoid crashes) and the discrete
character of the model. Although this is the simplest choice possible it leads to complicated be-
haviour both in space and time. Especially a phase transition in the sense of statistical physics
occurs from laminar 
ow to a high-density phase dominated by start-stop waves [13, 14, 15, 16].

Therefore it would be interesting to obtain exact results for this model in certain special cases
or to apply at least systematic approximation methods. The former will be discussed in this
chapter, the latter in the next one.

In the so-called mean-�eld-approximation one neglects spatial correlations, i.e. the distance
to the car ahead and the velocity of this car is chosen at random according to a probability
distribution which is taken from the car statistics at a given timestep. With this simpli�cation
it is possible to write down iteration equations for the car statistics (i.e. number of cars with a
certain velocity). From this one can directly derive the fundamental diagram as a function of
the maximum velocity and the deceleration probability [17].

A rather simple �nal expression for the 
ow f(c; p) as a function of the density c and the
deceleration probability p is obtained for the special case vmax = 1 since the complete set of
equations for the cars with di�erent velocities simpli�es considerably. The �nal result reads
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Figure 1: Flow for vmax =1 in mean �eld approximation. From bottom to top, the randomization parameter p

is 0.1, 0.3, 0.5, 0.7, and 0.9.
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where we have introduced q = 1�p and d = 1� c. In Fig. 1 the fundamental diagram is shown
for �ve di�erent values of p. The curves shown are trivial upper bounds for the 
ow at any
�nite maximum velocity in this approximation (this in fact is true only for one-lane tra�c!).

Inspecting the diagram more accurately two remarks have to be made: 1) The slope at the
origin (c � 0) is in�nite which means that already a very small number of cars gives rise to a
macroscopic amount of 
ow. This in fact is unrealistic and only an artifact of the calculation
due to setting vmax to in�nity. 2) The absolute value of the maximum of the 
ow (0:18 for
p = 0:5) is much too low when compared to 'realistic' data (more than 0.5). This is due
to the procedure of the mean-�eld approximation where the spatial correlations are omitted.
Therefore a car with high velocity has the same probability to "see" a slow car in front of it as
a slow car itself. But it is known that tra�c is clustering in the sense that one can divide the
cars into clusters of slow and fast cars only [7].

5 Approximative methods

In order to include correlations in space we have used two di�erent approximation schemes.
One is called cluster-approximation and takes into account correlations over a certain distance
n exactly and longer distances again in a statistical way ("n-cluster method") [18, 17, 20]. For
n = 1 one recovers the mean-�eld theory of the last section.

The problem with this approximation scheme is that one has to close the set of equations,
which is possible only using conditional probabilities for the regions beyond the custers. This
makes the practical calculations quite involved. A second and more serious problem is that the
number of equations grows with vmax and n as (vmax + 1)n, yielding for vmax = 5 in the lowest
order beyond mean-�eld theory (n = 2) a number of 36 equations! Therefore one is restricted
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Figure 2: Convergence of the n-cluster approximations to the simulation result for the case vmax = 1 and

p = 0:5. Already the 2-cluster approximation is exact.

to low values of vmax for larger clusters.

Surprisingly we found that the n = 2-cluster approximation gives the exact result in the case
vmax = 1 (which can be proved exactly, see [17]) given by

f(p; c) =
1�

q
1� 4qc(1� c)

2
:

It can be seen (Fig. 2) that the fundamental diagram is symmetric with respect to c = 0:5 which
is a common feature of general models with vmax = 1 due to the "particle-hole" symmetry (which
means that driving a car to the right is the same as driving a free site ("hole") to the left). In
practice the fundamental diagrams are by no means symmetric and therefore higher maximum
velocities are necessary. It should also be mentioned that in the case of random updates (e.g. in
the asymmetric exclusion process) the mean-�eld approximation already gives the exact result.
This means that no correlations at all exist in this model, a completely unrealistic situation.
For synchronous update cars attract each other with a force over two lattice sites ("bunching")
which can be seen in real tra�c.

We have performed the cluster approximation for vmax = 2 up to a cluster length of 5 (with
35 = 243 equations). The huge number of equations has to be generated by computer-algebra
and then be solved numerically. The results are shown in Fig. 3. The di�erence between the
calculations for n = 4 and 5 are less than 1% and the latter data �t quite well the simulation
results. On the other hand one should note that the result does not become exact even for n = 5
re
ecting the fact that in this model longe range correlations indeed exist (as should be expec-
ted). This is in contrast to the model with vmax = 1 and supports, beside the asymmetricity
of the fundamental diagram, the necessity of maximum velocities vmax > 1.

Finally we have introduced a new kind of approximation called car-oriented mean-�eld theory

[19]. Here one takes into account explicitely the distance of a car to the car directly ahead as
an additional parameter. It can be shown that this approximation leads for vmax = 1 directly
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Figure 3: Convergence of the n-cluster approximations to the simulation result for vmax = 2 and p = 0:5.

Already the 5-cluster approximation gives a good �t of the simulation data.

to the exact result. For higher vmax this yields a signi�cant improvement of the fundamental
diagram in comparison with the simulations but the analytical theory is quite involved. Hope-
fully it will be possible also to treat nonequilibrium situations with this kind of approximation.

6 Summary and outlook

In this article we have discussed results for a new kind of cellular automaton model for the
description of tra�c 
ow. Although the de�nition of the model is quite simple it is capable of
describing real tra�c data in a reasonable way. Due to its discreteness in space and time it is
an useful tool for e�cient large scale simulations of tra�c networks. Furthermore analytical
investigations show that the complex behaviour of the model contains many properties which
one would expect from analyzing data taken from real tra�c.

There are several possibilities to extend the applicability of the model. First of all it is by
no means necessary to restrict tra�c to cars with the same maximum velocity. It is possible
to assign to each car its own parameters vmax and p. But with the geometry chosen above
(single-lane tra�c on a ring) the slowest car determines the 
ow of the whole system since
passing is not allowed.

Therefore the mixing of di�erent types of cars only makes sense if one includes passing through
additional rules or one increases the number of lanes. In two-lane tra�c the lane-changing
behaviour is crucial and several assumptions can be made [21, 22, 23]. The simplest way is to
ask the cars to change in an intermediate timestep and than to treat the lanes separately as
one-lane tra�c. Di�erent properties of the car drivers can be taken into account, e.g. how far
they look back before changing the lane etc. It can be seen that asymmetric rules with di�erent
probabilities for left-right and right-left changes are necessary for realistic tra�c data.

In comparison to the Follow-the-Leader theory this CA model goes one step further by discreti-
zing space and time and by simplifying the interaction between the cars considerably.
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